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Abstract 

An outdoor environment presents t o  a robot objects 
that are drivable, like tall grass and small bushes, or 
non-drivable, like trees and rocks. Baditionally, be- 
cause of the dificulty of discriminating between these 
classes, a robot searches for paths free of objects of 
either class. Although this approach prevents colli- 
sions with objects missclassified as drivable, it also 
eliminates a large number of non-free drivable paths 
and by doing so, it might eliminate the only path to a 
desired destination. In this paper we present of a real 
time algorithm that detects foliage using range esti- 
mates from a rotating laser. Objects not classified 
as foliage are conservatively labeled as non-drivable 
obstacles. In contrast to related work that uses range 
statistics to classih the objects, we exploit the ex- 
pected localities of an obstacle, in both space and 
time. The Urbie robot is presently using this algo- 
rithm to discriminate drivable grass from obstacles 
during outdoors autonomous navigation tasks. 

1 Introduction 

A major problem for autonomous cross-country nav- 
igation of robots is the discrimination between driv- 
able and non-drivable objects in the path. Until a 
few years ago, outdoors robotics was mostly avoided, 
in part because many core research problems (e.g., 
path planning, mapping, etc.) could be studied in- 
doors, decoupling them from the uncertainty associ- 
ated with unstructured environments. The main ex- 
ception was outdoors navigation of man-made roads, 
as in the case of the Navlab vehicle and its successors 
[l]. As the state of all-terrain sensors improves, the 
development of cross-country navigation platforms, 
like military surveillance robots and search and res- 
cue vehicles, is becoming cost-effective. 
The laser radar (ladar) is one of the sensors that is 
becoming cost-effective in cross-country navigation. 
The ladar is an active sensor that fires a laser beam 
and then senses its reflection, or return, from the 

scene. From this return, the sensor estimates the dis- 
tance, or range, to the object of the scene hit by the 
beam. The use of a rotating mirror allows the sensor 
to sweep the scene about an axis, obtaining a 1-D 
range signal (e.g., [2]); placing a 1-D laser on a tilt 
unit allows the sensor to sweep an area of the scene, 
producing a range image (e.g., [3], [4])). Ladars are 
useful because they provide a range estimate in many 
situations where it cannot be estimated with a stereo 
pair or by other means, e-g., night operation, low- 
frequency high-contrast scenes with shadows, etc. 
In this paper we describe a real time algorithm that 
uses the range estimates of a rotating ladar to  detect 
foliage in an outdoors scenario. This classification 
allows the inclusion of tall grass to any free path 
that the robot may select while still allowing it to 
avoid partially hidden obstacles. Recent approaches 
to use a ladar to find obstacles partially hidden by 
grass rely on the statistics of the signal (e.g., [5] ) .  In 
contrast to these approaches, we exploit the spatial 
and temporal localities of the objects in the scene to 
classify the returns. The result is a robust algorithm 
with a low false alarm rate. 
This paper is organized as follows. In Secs. 2 and 3 
we describe the ladar and provide an overview of the 
algorithm. In Secs. 4 and 5 we show how to select 
non-foliage returns and how to prune them, respec- 
tively. In Sec. 6 we describe how we keep track of the 
state of the scene. In Sec. 7 we describe experimental 
results using Urbie, an all-terrain autonomous robot. 
Finally, in Sec. 8 we present our conclusions. 

2 The Ladar System 

Consider a mobile robot moving in a field of grass, 
as shown in Fig. 1. This figure shows a top view of a 
cross-section of the scene, where blades of grass and 
tree trunks are represented by small and large white 
circles, respectively. Tree trunks A and B represent 
the cases where an obstacle is partially hidden by 
grass and in the clear, respectively. The robot scans 
the scene parallel to the ground, once every r sec- 
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Figure 1: Robot using a ladar to scan a scene 

onds. Each scan spans an angle of R radians and 
provides range estimates to objects located farther 
than dmjn and closer than dmaz. Thus, a sampling 
interval (i.e., the angle between successive fires of the 
laser) of 8 radians yields at most 

N, = ale 

range estimates per scan. Some estimates might be 
missing, e.g., there might not be an object in the 
path of the laser within the valid distances or the 
target might absorb the light at the wavelength of 
the laser. In Fig. 1, the locations of the scene hit by 
a beam of the scan are marked with a black circle. 
The accuracy of each range estimate is affected by 
parameters as varied as distance, environmental tem- 
perature and color and pose of the target [2]. In 
practice, within a narrow range interval, the error 
addi of an estimate can be considered to  vary linearly 
with the distance di. Thus, the range estimate of an 
object located at a distance di is 

ri = di f (a  di + b) 

with 

dmaz - dmin 

dmaz - dmin 
a =  and b = dmin - a dmin, ( 1 )  

for dmin 5 di 5 dmaz. 

Finally, we consider negligible the laser divergence 
within the valid range. Thus, the beam is so nar- 
row that it cannot hit two different objects located 
at different distances which creates erroneous range 
estimates formed by a combination of both distances. 

3 Algorithm Overview 

The goal of the algorithm is to discriminate foliage 
from other elements of the scene by classifying each 
return of each scan as FOLIAGE or NOTFOLIAGE. Ini- 
tially the robot is located in free space, either in a 

clear or in the middle of a field of grass. After each 
scan is processed, the algorithm produces three out- 
puts that describe the results at different levels of 
detail. The most detailed output is the array of fi- 
nal range estimates, R f ,  which contains Ne elements, 
each one corresponding to one return of the scan, as 
shown in Fig. 1. If we are not interested in the classi- 
fication of each return then the array R, summarizes 
the results that span a given angle or. Hence, R, has 
N, elements where 

N, = O / a .  

Finally, the most general output is the flag alarm 
which is set to indicate that there is an object in the 
scene that is not foliage. 
The pseudo-code of the algorithm is: 

ANALYZE-LADAR-SCANS () 
1 Rf(1  : N e )  t 0 
2 R,(1: N,) t O  
3 forever 

5 
4 [A, R] C-GET-SCAN-DATA () 

[alarm, R,, R f ]  +CLASSIFY (A,  R )  

After initializing the arrays Rf and R, we proceed 
to process the scans. Line 4 reads the scan into two 
arrays of Ne elements, A and R. The element A(i)  
is the angle at which the i-th beam was fired while 
R(i) is the raw range estimate of the object hit by 
the beam. In the rest of this paper we assume that 

In the routine CLASSIFY(), we exploit three locality 
principles to find NOTFOLIAGE returns. To illustrate 
these principles we assume that at time t we found 
an obstacle an angle p, e.g., the tree trunk A in Fig. 
1. First, the locality in time of the obstacle indicates 
that it will be located at around p at time t + T.  

Second, we use the locality in space of the obstacle, 
Le., an obstacle must have a large size, spaning over 
a large angle +. Thus, if a beam hits the obstacle at 
angle p then all beams that might hit the obstacles 
must lie within /3 f +. Finally, we use the locality in 
space of the clear in the foliage that allowed the laser 
to hit the partially hidden obstacle, i.e., if a beam at 
angle penetrates the foliage, then all its inmediate 
neighbors fired at B f A, for A (< $, are likely to 
penetrate the foliage through this same clear too. 
These locality principles hold for any combination 
of motions of the robot and the obstacles, as long 
as the sampling interval, 8, and the time between 
consecutive scans, T ,  are sufficiently small. 
The pseudecode of the CLASSIFY routine is 

we have access to Ne, N,, dmin and dmaz. 

CLASSIFY (A,  R )  
1 [O, nad2O] +FIND-LOW-FREQ (A,  R)  



2 R, +GET-OBST-CANDIDATES (A, R, 21, nad2v) 
3 R, +RELAX-OBST (A, R, R,) 
4 Rf +REMOVE-NEW-OBST (A,  R,) 
5 Rf +REMOVE-THIN-OBST(Rf, w,, 0,) 
6 Rf +CROP-RANGE (Rf, amin, dma,) 
7 [alarm, R,] +UPDATE-AND-ARCHIVE (A,  R,) 
8 return(alarm, R,, Rf)  

The first three routines determine R,, an array 
of returns likely to have hit obstacles. The second 
three routines determine Rf , that classifies each 
return of the scan. Finally, the routine UPDATE 
AND-ARCHIVE saves the results for evalation of 
future scans. We now discuss these routines. 

4 Candidate selection 

The first three routines of CLASSIFY select returns 
that are likely to belong to obstacles. 

4.1 Finding low-frequency scan regions 
The routine FIND-LOW-FREQ uses the estimates R to 
find an array R, where it is easy to identify returns 
that belong to obstacles. Consider the returns in 
Fig. 1. If we plot R, as shown in Fig. 2.a, we notice 
that the problem of locating the obstacles amid the 
foliage is similar to that of recovering a signal buried 
in noise. Thus, continuining with the analogy, the 
obstacles can be recovered better if we filter out some 
of the foliage returns, increasing the signal-to-noise 
ratio of the scan. 
To select a filter that removes mostly foliage returns, 
consider all the possible returns within an angle a 
(Le., the size of our filter) that are centered around 
an angle p, as shown in Fig. 1. If the obstacle spans 
an angle larger than a, any beam fired at p f a /2  
can travel, at most, as far as the obstacle. Thus, 
the largest return of the set is likely to belong to 
the obstacle if any of the beams hit the obstacle. 
Hence, in our case, we can use a maximum-value 
filter that will remove mainly foliage returns. The 
size of the filter, a, must be larger than the sampling 
interval 8 and smaller than the angle spanned by the 
smallest object that we want to detect when located 
at a distance dmin from the sensor. The result of 
applying such filter to  nonoverlapping windows of R 
is shown in Fig. 2.b. Within each window, a black 
dot indicates the maximum return selected by the 
filter, a white dot indicates a return filtered out, and 
a solid line indicates the value of the resulting filtered 
scan v. Since, in this example, a M 2 8 then v has 
N, M Ne/2 elements. 
The next step is to  identify low frequency regions 
of the array v that might indicate the presence of 
an obstacle using the magnitude of its first or sec- 
ond derivatives. In Figs. 2.c-d we show approxima- 
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Figure 2: a) The estimates of the example shown 
in Fig. 1, b)  the array v of maximum mnge values, 
e) its derivative, d) second derivative and e) the ab- 
solute value of its second derivative divided by v 



tions of these derivatives for the example, found us- 
ing forward differences. If the face of the obstacle, as 
mapped on the array v, is either constant or follows 
a ramp function, then the magnitude of the second 
derivative is small. Thus, we are able to identify ob- 
jects of any shape and in any pose with respect to the 
sensor, as long as their surfaces are locally flat, by 
searching for areas of small magnitude in the second 
derivative. 
The last step of this routine is to generate the array 
nad2v which stands for normalized absolute value 
of the second derivative of v. The absolute value is 
used to allow a magnitudebased thresholding of the 
second derivative of v. Furthermore, a normalization 
of nad2v by the distance to the object, removes the 
bias introduced by the fact that objects located at 
different distances have a different associated noise 
that affects the measure of their frequency. 
The pseudo-code of the FIND-LOW-FREQ routine is 

FIND-LOW-FREQ (A, R) 
1 v(1: N,) t O  
2 forr t 1 to Ne 
3 
4 if R(r) > v(i) 
5 v(i) t R(r) 
6 
7 
8 
9 if v( i )  = 0 
10 nad2v t 0 
11 else 
12 
13 return (v, nad2v) 

i e LA(r)/a] + 1 

for i t 1 to N, - 1 

for i t 1 to N, - 2 
dv t v(i + 1) - v(i) 

nad2v t Idv(i + 1) - dv( i ) l /  v( i )  

Lines 1-5 filter R and generate v. Lines 6-7 
approximate the derivative of v using forward differ- 
ences and, finally, lines 8-12 generate the absolute 
value of the second derivative of v normalized by v. 

4.2 Selecting candidates 

The GET-OBST-CANDIDATES routine selects from R 
those returns that are most likely to  be obstacles 
returns. The pseudo-code of this routine is 

GET-OBST-CANDIDATES (A, R, v, nad2v) 
1 
2 

4 d o n e t 0  
5 whi ledone=O 
6 d a n e t l  
7 
8 
9 

R,(1 : Ne)  t 0 
fori t 1 to N, 

3 Tk(i) 4- Ki +maZ(Tk-l(i), T k - ~ ( i ) ) / 2  

for T t 3 to Ne - 2 
i t LA(r)/aj + 1 
if v(i) = 0 or R(r) = Rc(r) or R(r) = 0 

10 
11 

12 
13 
14 
15 
16 
17 
18 
19 

It returns an array of candidates R, which is 
zero except a t  the locations of returns for which 
there is a strong evidence that belong to obstacles. 
A small magnitude of nad2v(i) indicates a signal 
with low frequency components which might indi- 
cate the presence of obstacles. For example, in the 
plot of nad2v shown in Fig. 2.e, of the five locations 
with a small magnitude, the locations 1 and 10 cor- 
respond to obstacles while 4 and 5 correspond to low 
frequency areas caused by a lack of signal. Thus, an 
obstacle in an area i can be observed if the value of 
nad2v(i) is smaller than a threshold Tk(i). In lines 
2-3 we set this threshold to the sum of a constant 
K1 and a function of the thresholds found for this 
location in the two previous scans. We describe the 
function that we used in Line 3; other functions that 
raise the threshold at locations where threholds were 
large in previous scans could also be suitable. 
The main part of the routine updates the arrays of 
candidates R, and thresholds Tk. A fast-rejection 
condition, in line 9, rejects those areas of the scan 
with no returns (Le., v(i) = 0), individual locations 
with no return (Le., R(r)  = 0) and locations that al- 
ready contain a candidate (i.e., R(r) = Rc(r)). The 
update condition, in line 11, states that a return is 
likely to be from an obstacle if it was selected by the 
maximum-value filter (i.e., R(r) = v(i)) and, if to- 
gether with its four closest neighbors, it spans a low 
frequency region (i.e., nad2v is smaller than all the 
thresholds within a vecinity of 2) .  If the update con- 
dition is verified, the array of candidates is updated 
with the value of the estimate (i.e., R,(r) = R(r)) 
and, having detected this position as an obstacle, 
all the thresholds of the neighborhood are raised by 
some fraction of a value 6. As shown in lines 13-15, 
we raise higher the thresholds of locations close to 
the identified obstacle than those away from it. 

4.3 Reevaluating returns near to candidates 

The nonzero locations of R, are very likely to be 
obstacles but to achieve this confidence we sacrificed 
resolution that we now must recover. At this point, 
a value of R, can only be a candidate if it has the 



value selected by the maximum-value filter. The 
goal of RELAX-OBST is to use the information in R, 
about the location of each obstacle to reevaluate the 
returns inmedeately adjacent to it. The pseudo-code 
of this routine is 

RELAX-OBST (A,  R,  R,) 
1 d o n e t 0  
2 while done = 0 
3 d o n e t 1  
4 for r t 3 to  Ne - 2 
5 i +- lA(r)/aJ 
6 c t 1 -k K2 (ck-l(i) + ck-2(i)) 
7 
8 

T t C (a R(r) + b) 
if Rc(r) = 0 and 

U5=-2 [(R,(r + A  > 0 and 
IR(d - R(r + j> l  < TI 

9 + R(T) 
10 d o n e t 0  
11 return(R,) 

The main loop updates the array of candidates 
R, until there is a complete reevaluation of the 
returns of R that does not lead to an update. As 
indicated in lines 8-9, a return is updated to be 
a candidate if it was not previously a candidate 
and if any of its adjacent returns is both already a 
candidate and is such that the difference between 
the two returns is smaller than a threshold T. 
Hence, we are exploiting the spatial locality of 
the obstacles to  reevaluate a return adjacent to a 
return that is known to belong to an obstacle; if 
two adjacent returns hit targets located at about 
the same distance and if we know that one of the 
targets was an obstacle then, it is very likely that 
the other return hit the obstacle too. 
The key for a succesful updating is the threshold T 
which is composed of two elements, as described in 
lines 6-7. The first element is the scalar C, larger 
than unity, which is some function of the arrays Ck-1 
and c k - 2  that contain information about the loca- 
tion of obstacles in the previous two scans, i.e., these 
arrays keep track of obstacle likelyhood over time in 
the same way that the arrays Tk-1 and Tk-2 kept 
track of previous thresholdings in the GET-OBST- 
CANDIDATES routine. We will describe these arrays 
later, when we discuss the routine where they are 
updated. The second element of T is our approxima- 
tion to the error of the estimate, i.e., a linear function 
that increases with range with parameters given by 
Eq. 1. Thus, a return adjacent to a candidate re- 
turn is updated to be a candidate if the difference 
between their ranges lies within the expected error 
for that distance; if we have evidence that an ob- 
stacle has been sighted before at this location, then 

C > 1 relaxing the expected error. 
This concludes the selection of returns that are likely 
to belong to be returns from an obstacle. 

5 Candidate prunning 

The second three routines of CLASSIFY return a fi- 
nal classification Rf of each return based on prun- 
ning the array of candiates R,. The objective of this 
prunning is to keep a low false alarm rate. 
The first prunning exploits the time and space 
locality of the obstacles. The code of this routine is 

REMOVE-NEW-OBST (A,  Re) 
1 
2 

for r t 3 to Ne - 2 
i t LA(r)/cuJ + 1 

3 
4 Rf (7.1 + 0 

6 Rf ( r )  Rc 

if ni.=? 3=r-2 (ck-1 ( j )  = 0 and c k - 2  ( j )  = 0) 

5 else 

7 return(Rf) 

Lines 4-7 state that a candidate return R,(r) 
must be added as a final obstacle R f ( r )  only if 
an obstacle was located in the neightborhood in 
either of the last two scans. An obstacle at a 
given location will be identified as a previously seen 
obstacle regardless of whether it moves slightly or 
is temporarily occluded. Clearly, the obstacle will 
be identified as a new obstacle (and not added to 
Rf) if its position with respect to the ladar changes 
so fast that its new location is outside its previous 
neightborhood or if the occlusion lasts so long that 
the evidence of having seen it before has expired. 
The second prunning routine, REMOVE-THIN-OBST, 
removes from the list of final obstacles those which 
appear to be isolated hits, i.e, We keep an obstacle 
only if there are 0, obstacles within a surrounding 
window of fW,/2 returns where W, << Ne. The 
code of the routine is arby. 

REMOVE-THIN-OBST (Rf, w., 0,) 
1 d =  LW,/2J 
2 
3 f o r r t d + l t o N , - d  
4 if T[r]  > O 
5 m t t o  
6 

8 
9 if m t  < 0, 

11 return(Rf) 

T[l : Ne] t Rf[l : Ne] 

for k t -d to d 
7 i f T [ r + k ]  > o  

10 Rf [TI + 0 

mt t c a t  + 1 

The last pruning routine is CROP-RANGE which 



crops the array of obstacles Rf  to the range for 
which our linear approximation to the expected 
error of an estimate holds. The routine is 

CROP-RANGE (Rf  , $,in, d,,,) 
1 forr t 1 to Ne 
2 if R f ( r )  > dmaz or R/(T)  < dmin 
3 Rf ( r )  t 0 
4 return(Rf)  

The complexity of each one of these prunning rou- 
tines is O(Ne).  

6 Saving the state for the next scan 

The last routine of CLASSIFY updates the arrays 
c k - 1  and Ck--2 which keep track of the obstacles 
over time and returns the array R, that summarizes 
the position of the obstacles and the flag alarm. 
The code of the routine is 

UPDATE-AND-ARCHIVE (A,  Rc) 
1 Ck(1 : N , )  t o  
2 
3 alarm t 0 
4 
5 
6 if R,(r) > 0 

8 

10 alarm t 1 

12 for i t 1 t o  N ,  

R,(1 : N,) t 0 

forr t 1 to Ne 
i t LA(r)/(rJ + 1 

7 c k ( i )  t K3 
if R,(i) = 0 or R,(i) < Rc(r) 

9 R,(i) + Re(r) 

11 c k - 2  t C k - 1  

13 if c k ( i )  > c k - l ( i )  

14 C k - l ( i )  t c k ( i )  + C k - l ( i )  

15 else 

17 if c k - 1  < 0 

19 return(alarm, R,) 

16 c k - l ( i )  6 c k - l ( i )  - [ ( c k ( i )  + c k - l ( i ) ) / 2 ]  

18 c k - 1  6 0  

The first loop of the routine, in lines 410,  ac- 
complishes three things. First, it initializes the 
array c k  with a value K3 in all the locations 
where a candidate was found. We use the array of 
candidates R, to  initialize c k  instead of the array 
of final obstacles R, so we can reduce the alarm 
rate (generating R f )  without losing information 
about the previous appearance of the candidates 
(contained in Re)- The value of K3 is selected to be 
of the order of magnitude of the expected error of 
the estimates. Second, in lines 8-9, it sets the value 
of R, to the closest non-zero return, i.e., if there is 
an obstacle in a given direction i, then R,(i) will 
contain the minimum distance between the robot 

and the obstacle. This value can be used to modify 
a robot trajectory without having to analyze the 
individual returns. Finally, the first loop raises the 
alarm flag after it finds that there is, indeed, an 
obstacle in the scan. 
Lines 11-18 update the arrays that have evidence of 
the presence of obstacles. Line 11 copies c k - 1  into 
c k - 2 .  The loop in lines 12-18 update the vector c k - 1  

in the following way. If there is a stronger evidence 
of the presence of an obstacle than the evidence tha 
we had before (i.e., c k ( i )  > c k ( i  + 1)) then bias 
the evidence in a positive direction; otherwise, bias 
the evidence the the negative direction. In our case, 
we have bias the evidence in the positive direction 
by adding the evidence of c k  and C k - 1 .  This is a 
strong bias that makes the algorithm aware of the 
presence of an obstacle very fast. In contrast, we 
biased the evidence in the negative direction by sub- 
stracting from c k - 1  the average of the evidence of 
c k  and c k - 1 .  This is a weak bias that makes the d- 
gorithm forget the presence of an obstacle very slow. 
Thus, obstacles that have been seen before, even be- 
fore many scans, are rapidly identified when they 
reappear. Lines 17-18 make sure that the evidence 
is never negative. 

7 Experimental results 

Although the algorithm has a number of parame- 
ters that appear that are loose, in practice, finding 
the appropriate values is easy. These type of pa- 
rameters appear often in systems that deal with real 
world uncertainties and there is no other way to ad- 
just them but a trial-an-error approach. To put the 
issue in perspective, consider that a control system 
based on a PID compensator also requires this type 
of adjusting but still, it is the most commonly used 
compensator. Likewise, there is no way to determine, 
for example, which is the best size of a secondary 
cache memory given the size of the primary cache, 
the RAM and the hard disk. A given configuration 
that excels in a given benchmark will lag in another. 
Still, it is very easy to estimate the size of a secondary 
cache that is likely to work well under a large number 
of computational loads. In summary, the parameters 
of the routines that we presented are quite easy to  
adjust and once set, the algorithm works well in a 
wide variety of scenarios. 
The algorithm was designed using the same set of 
data in related work by Macedo, Manduchi and 
Matthies [5]. The data consists of eight sequences 
with a lenght that varies between 15 and 90 seconds. 
The platform used to gather the data was the Urbie 
robot using and Accuity AccuRange 4000 ladar. This 
ladar operates at a wavelength of 1064 nm and has 
sampling interval of 8 = 12.2 mradians. Each scan 



has Ne = 512 returns and thus, it covers an angle of 
SI = 24. The laser is capable of estimating range up 
to distances of 50 ft. Still, due to the size and speed 
of the robot and we kept our range of interest within 
a minimum distance dmin = 0.3 m and a maximum 
distance of d,,, = 2 m. Given these parameters, 
the laser can hit a 2.5 cm diameter pole 2 times at 
a distance of 1 m. We measured the error of the es- 
timates for two known targets within this range and 
obtained that the coefficients in Eq. 1 are a = 0.015 
and b = 12.3. This means that we expect the er- 
ror to rise at a rate of lmm evey 70" of range. 

set to K I  = 0.025 and 6 = 0.03. The free parameter 
The free parameters in GET-OBS-CANDIDATES were 

in RELAX-OBST W a s  Set to K2 = 0.05. Finally, the 
free parameter in UPDATE-AND-ARCHIVE W a s  Set to  
K3 = 25. 
Once the parameters of the algorithm were set, they 
kept fix for all the scenenarios of the data set. The re- 
sults for this set is 4 false alarms in 800 images which 
covered scenerios where the robot was in the clear, 
in sparse grass and in dense grass, both while stand- 
ing still and moving, both with and without rocks 
clear and hidden by grass. Figure 3 shows a robot 
approaching two rocks. The corresponding graph of 
returns, as seen by the laser, is shown in Fig. 4. The 
graphs shows an area of 2 x 2/, m2.  The front of the 
robot is upwards. The laser is located at the origin of 
the graph. The solid pie slices originating from it are 
robot self-occlusions caused by the on-board camera, 
the antennas and other structures. The long lines 
originating from the laser indicate returns that were 
identified as NOTFOLIAGE. All other returns (i.e., 
the dots of the graphs) were identified as foliage. 
In Fig. 5 and 6 we have the corresponding scene and 
graph of the robot travelling near a field of very dense 
grass. Notice that in front of the robot there is a solid 
wall of grass which the algorithm correctly identifies 
as foliage. The robot is partially tilted to  the right 
and the scan hits the ground. The corresponding 
returns are also correctly identified as members of 
the NOTFOLIAGE class. 
The algorithm was ported to Urbie which, by the 
time, had a different ladar system. The new ladar 
system is a Sick laser with a sampling interval of 
6 = 8.7 mradians (Le., 0.5 degrees), covers an angle 
of fl = 4 in each scan and has an expected error in 
the range of 70 mm at 4 m. The adjustment of the 
parameters was easy and the robot perform correcly 
at the first try, during the first field test. The algo- 
rithm runs in real time and drains minimal resources 
from the robot. 

Figure 3: Robot facing two rocks at 45' and 315O 

Figure 4: Return classification of scene an Fig. 3 

8 Conclusion 

We have presented a real time algorithm to identify 
foliage present in a natural scene. The algorithm 
uses the locality of the obstacles in time and space 
to first identify a list of returns that were likely to 
hit obstacles and then to prune this list to eliminate 
false positives. The algorithm was succesfully ported 
to the Urbie robot. Our future plans are to extend 
this algorithm to handle range images. 
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